Fabrication of Lotus-Type Porous Aluminum Utilizing Decomposition of Moisture
نویسندگان
چکیده
Lotus-type porous aluminum with cylindrical pores oriented in one direction was fabricated by a casting method utilizing the decomposition of moisture in a vacuum. Hydrogen decomposed from moisture is utilized for cylindrical pores to grow during unidirectional solidification. However, pores are not formed in the case of a casting in hydrogen or argon atmosphere, because hydrogen or argon gas pressure suppresses the pore growth. The porosity of lotus aluminum does not depend on the moisture amount, which indicates that the moisture amount is almost saturated within the amount used in this study. The average pore diameter does not depend on the moisture amount, because the pore diameter depends mainly on ambient pressure and solidification rate. The distribution of pores becomes homogeneous by decreasing melting temperature, because the rate of the reaction of moisture possibly becomes low (more suitable for pore growth) by decreasing the melting temperature. [doi:10.2320/matertrans.M2009032]
منابع مشابه
Effect of Hydrogen Pressure on Moisture-Based Fabrication of Lotus-Type Porous Nickel
Lotus-type porous nickel, which has long straight pores aligned in one direction, was fabricated by utilizing moisture during unidirectional solidification in argon atmosphere. We studied the effect of the quantity of hydrogen in the atmosphere on the fabrication of lotus-type porous nickel. Adding hydrogen in the atmosphere, it was expected that the porosity of the lotus-type porous nickel wit...
متن کاملSuperhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography.
We demonstrate the fabrication of 2-D arrays of nanopillars made from perfluoropolyether derivatives using a porous anodic aluminum oxide membrane as a template. Pretexturing the aluminum prior to anodization enables one to engineer multiple morphological length scales and thereby synthesize a lotus-leaf-like topography. Both nanopillars on a flat surface and on a lotus-leaf-like topology exhib...
متن کاملLiquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance.
Ice-repellent coatings can have significant impact on global energy savings and improving safety in many infrastructures, transportation, and cooling systems. Recent efforts for developing ice-phobic surfaces have been mostly devoted to utilizing lotus-leaf-inspired superhydrophobic surfaces, yet these surfaces fail in high-humidity conditions due to water condensation and frost formation and e...
متن کاملFabrication, properties, and applications of porous metals with directional pores
Lotus-type porous metals with aligned long cylindrical pores are fabricated by unidirectional solidification from the melt with a dissolved gas such as hydrogen, nitrogen, or oxygen. The gas atoms can be dissolved into the melt via a pressurized gas atmosphere or thermal decomposition of gaseous compounds. Three types of solidification techniques have been developed: mold casting, continuous zo...
متن کاملManufacture of Aluminum Closed-cell Foam by ARB process using CaCO3 as the blowing agent
Metal porous foams have been eliciting much interest in recent years due to their high capacity of energy absorption. The characteristics of the pores in these materials play an important role on their energy absorption capability and other properties. This study reports the fabrication of aluminum closed-cell foams by accumulative roll-bonding (ARB) technique using calcium carbonate (CaCO3) as...
متن کامل